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Abstract 

U This paper examines attenuation processes from the  view- 

point of co l l i s ion  theory, using the opt ica l  theorem t o  connect 

c 

at tenuat ion cross-section CJ and r e f r ac t iv i ty  n with diagonal 

elements of the T matrix. This approach provides resonance pro- 

files (for '*natural*' l i n e s  shapes) of the form 

where the p ro f i l e  parameters A, B, C ,  D, r, w 0 are given i n  

t e r m s  of atomic matrix elements. 

P a r t  I reviews the notion of resonances. Part I1 summarizes 

the relevant r e s u l t s  of co l l i s ion  theory, s t ress ing  physical 

interpretat ion,  and gives a def in i t ion  for  excited (or resonance) 

states based on a simple par t i t ion  of basis states i n t o  two classes. 

Part I11 applies perturbation theory t o  the  calculation of reson- 

ance prof i les .  Part IV applies these r e s u l t s  spec i f ica l ly  t o  

the attenuation and refraction of photons by tenuous gases, w i t h  

par t icu lar  a t ten t ion  paid t o  the prof i les  of autoionizing l ines .  
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I. SPECTRAL LINES AS RESONANCES 

A. The Nature of Resonance Observations 

R a t e  coef f ic ien ts  or cross-sections f o r  co l l i s ion  processes, 

measured as a function of incident p ro jec t i l e  energy E, of ten 

show abrupt var ia t ions (resonanceg) as the  energy passes some 

value E 

the  dispersion formula 

Typically, t h i s  energy dependence o r  p r o f i l e  folluws 0’ 

where the background C ( E )  varies only slawly w i t h  energy, and By 

A, Eo ( the resonance energy) and I’ (the resonance width) are 

parameters independent of E. (Appendix A discusses several  al ter-  

nat ive parameterit of Q (E) ) . 
influenced by e f f e c t s  of f i n i t e  sample temperature,density and 

thickness -- effects t h a t  are treated i n  the  d i sc ip l ine  of radia- 

t i v e  t ransfer  and are here ignored: the present paper concerns 

only the llnaturalll shape of absorption l ines .  

Actual observations are ,  of course, 

l 

For i n e l a s t i c  co l l i s ion  processes, parameter A usually 

2 vanishes, and the formula 
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applies.  In  observations of absorption spectra, such resonances 

appear as dark absorption l ines  or spectral  l ines .  Observations 

of the re f rac t ive  index usually reveal a prof i le  with B = 0 :  4 

The explanation of such resonance phenomena i n  the absorp- 

6 t ion  and re f rac t ion  of l i gh t  t races  back5 to  the work of Se l lmeier  

8 and von Helmholtz7 (Lord Rayleigh pointed out tha t  M a x w e l l  an t i -  

cipated these r e su l t s  i n  posing a Cambridge T r i p o s  Exam i n  1869). 

From a more modern viewpoint, at tenuation occurs when an atom i n  

state A absorbs a photon y t o  produce the excited atomic s t a t e  A*: 

The excited s t a t e  subsequently decays by emitting one or more 

photons : 

A * + A + Y  . 

Since few emitted photons reappear i n  the d i rec t ion  of the 

incident beam, the encounter depletes the photon beam, and an 

absorption l i n e  develops. 

when the absorbing medium i s  cool and opt ica l ly  thin.)  

(This simplified picture  applies only 
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When the energy of A* exceeds the first ionization limit, 

9 decay by electron emission (autoionization ) may also occur: 

\4.+ 
A + e  

In turn, decay by photon or electron emission may occur through 

several modes or decay channels'' corresponding to the various 

possible states of the projectile and residual atom or ion. 

Autoionizing states (also called compound states, resonance 

states, metastable states, collision complexes) can, of course, 

be f o r m e d  either by electron bombardment of A+ or by photo- 

excitation of A: 

+ 
A + e  + 

A + e  

Not all projectile encounters lead to formation of such compound 

states: direct processes, such as photoionization and Thomson 

scattering of photons, and Coulomb scattering or potential scat- 

tering of electrons, may compete with compound-state formation. 

12 These excited states, therefore, influence such processes as 
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elastic and ine l a s t i c  scat ter ing of electrons,  electron capture 

(dielectronic  recombdnation ), and photon attenuation. Each 

type of observation discloses s l i g h t l y  d i f fe ren t  aspects of the 

compound state. In Eq. (l.l), the parameters C(E), 33, and A 

fo r  a par t icu lar  resonance vary with the type of project i le ,  

sca t te r ing  angle, and type of reaction product observed. The 

resonance energy E and resonance width r depend prirnariJyon the 

properties of the compound state, not on the mode of formation 

or decay. Although I have expl ic i t ly  described the interact ion 

of a photon pro jec t i le  with an atomic target ,  the conclusions 

apply t o  other project i les  col l iding with e i the r  atoms or  nuclei. 

13 

0 

To i l l u s t r a t e  how A, By and C(E)  may vary while Eo and I? remain 

fixed, Fig. 1 shuws cross-sections for  several  processes tha t  

can f o r m  compound s t a t e s  of the nucleus S i  

an t ic ipa te  tha t  observations of electron-scattering cross-sections 

w i l l  not completely determine photon-attenuation cross-sections. 

14 

28  
e O n e  must s imi la r ly  

B. Theories of Resonance Phenomena 

The conventional quantum theory of atomic absorption-line 

profiles15 presumes that the decay of a compound s t a t e  is not 

coherent with the formation process. 

decay of a system from a prepared i n i t i a l  state, the compound 

state. This leads t o  a Lorentz prof i le ,  Eq. (1.2),  with a width 

equal t o  5 t i m e s  the decay rate of the compound state. 

One may then consider the 
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Such an approach is  reasonable for  ordinary radiat ive 

decay, which proceeds qui te  sluwly on an atomic time scale 

(e.g., an electron circles the f i r s t  B o h r  o r b i t  of hydrogen 

i n  1.5 x 10 sec; the m e a n  l i f e  of the 2p leve l  of hydrogen 

is 1.6 x lo-’ sec) . 
f a s t e r  time scale (typically 10 sec) than radiat ive decay, 

and it is no longer evident that  formation and decay may be 

t rea ted  separately. Although it is possible t o  predict  the 

posit ion and width of resonance l i nes  by considering the decay 

of prepared states18, a f u l l  description of asymmetric prof i les  

requires  examination of the preparation process. 

-16 

However, autoionization proceeds on a much 

-14 

The quantum theory of scattering” provides a more satis- 

factory foundation for  a description of absorption-line prof i les .  

Such an approach ignores unobserved processes, such as the pre- 

paration of an unstable s t a t e  a t  some precise t i m e ,  and deals 

d i r e c t l y  with sca t te r ing  amplitudes and cross-sections. 

ra ther  than t i m e ,  is sharply defined. 

Energy, 

A number of authors have now developed general formalisms 

for describing reactions and resonance processes within the 

framework of quantum scat ter ing theory 24-32. 

authors i n i t i a l l y  directed their a t ten t ion  t o  nuclear reactions,  

many of t h e i r  r e s u l t s  apply equally t o  a t o m i c  co l l i s ion  processes. 

Subsequently other workers have applied and extended these tech- 

niques t o  the study of electron sca t te r ing  by atoms 33-38 and t o  

Although these 
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. For summaries of 39,40 the  prediction of resonance energies 

electron-resonance observations, the reader should consult the 

recent comprehensive reviewsby Burke" and by Smith 41 . 
Despite t h i s  ac t ive  s t u d y  of electron scat ter ing,  the 

pecu l i a r i t i e s  of photon-induced processes -- autoionization i n  

par t icu lar  -- have not been e x p l i c i t l y  examined from the viewpoint 

of reaction theory. Current investigations of autoionization a l l  

follow the approach of Fano and h i s  associates 

the Hamiltonian by mixing d iscre te  and continuum states. 

ins t ruc t ive  t o  see h w  the i r  r e s u l t s  emerge from co l l i s ion  theory . 

, who diagonalize 4 2 4 5  

It is 

46 

Furthermore, the  details of resonance attenuation (as d i s t in -  

guished f r o m  scattering or specific react ion processes) have not 

been f u l l y  

25 theory. 

formalism, 

parameters 

examined from the viewpoint of the "unified reaction 

In  the  present a r t i c l e  I w i s h  t o  point out how t h i s  

by providing an exp l i c i t  connection between p ro f i l e  

and atomic ma t r ix  elements, a ids  the interpretat ion 

of attenuation prof i les .  

Although nuclear and atomic co l l i s ion  processes may be 

viewed as two aspects of a general physics of co l l i s ions ,  they 

d i f f e r  in one important r e s p e c t .  During a nuclear co l l i s ion ,  the 

t a rge t  nucleus remains isolated from any disturbance apart from 

the pro jec t i le .  A t o m i c  col l is ions,  on the  other  hand, occur 

while the t a rge t  atom is  subjected t o  a var i e ty  of disturbances 

f r o m  surrounding atoms. I n  practice, such disturbances can 
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significantly distort the %atural" attenuation profiles of 

isolated atoms and any realistic theory of l ine shapes must 

account for the influence of the surrounding medium . However, 

the present paper w i l l  concentrate on coll isions with isolated 

target atoms. 

tenuous gases. 

47 

The results therefore apply to attenuation by 



-12- 

I 
1 
f 
I 
I 
1 
1 
8 

i 
I 

11. SUMMARY OF COLLISION THEORY 

A. The sca t te r ing  l4atri.x 

Scattering theory provides a useful means of visualizing 

the atomic processes that  are responsible for  absorption l i n e s .  

One imagines a wave-packet of knawn properties impinging on a 

One then examines the waves s ta t ionary sca t te r ing  center. 

t h a t  emerge, under the action of the time-dependent Schrijdinger 

equation: 

18-23 

To describe the evolution of Y ( t ) ,  one may introduce some con- 

venient s e t  of basis s t a t e s .  These many-particle states, degene- 

r a t e  eigenstates of an operator H , 

- 
0 

n 

a r e  labelled by a s e t  of quantit ies 2 (both d i sc re t e  and con- 

tinuous) t h a t  can completely describe the s t a t u s  of the projec- 

t i l e  and the ta rge t  particles.  48 

The choice of basis s t a t e s  defines the perturbing in te r -  

action V, the  difference between the actual Hamiltonian H and 

the operator 



0 
H = H  + V .  (2.3) 

(Conversely, a choice of V fixes the bas i s  states.) As defined 

here, V is en t i re ly  responsible for  t ransi t ions from one bas is  

state t o  another during the course of a sca t te r ing  event. 

A typical  sca t te r ing  event begins i n  the remote past 

(t + - m) with a wave-packet pro jec t i le  moving tuward the target  

from a grea t  distance. The in te rac t ion  V is assumed t o  vanish 

when the pro jec t i le  is f a r  from the atom, so t h a t  t h i s  i n i t i a l  

s i tua t ion  may be described as a superposition of bas i s  s t a t e s  

representing a de f in i t e  t a r g e t  s t a t e  and a wave-packet project i le :  

As t i m e  progresses, the wave-packet moves in to  the sca t te r ing  

region and the in te rac t ion  V alters both the wave-packet and the 

ta rge t  atom. 
20 The modified state may be w r i t t e n  as 

n 

J 
OI 

where the time-development operator U ( t , t  ) determines the change 

i n  Y ( t )  caused by the interact ion V. It s a t i s f i e s  the integral  

0 

* 
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20 equation, 

Ultimately, as t + w, the wave-packet passes out of the scat ter-  

ing region, Again the solution Y ( t )  becomes expressible as  a 

superposition of unperturbed eigenstates of H : 

% 

0 

J 
b 

J 
& 

49 The element Sba of the scat ter ing,  or S-matrix gives the com- 
% 

ponent p7 of the f i n a l  state Y ( t  + w) t ha t  emerges from the b * 

i n i t i a l  component p7 : a 

Although the i n i t i a l  and f i n a l  s t a t e s  $a and 3/ must be b 

states fo r  which the systemhas a pro jec t i le  a t  i n f i n i t e  sepa- 

rat ion (so-called open channels or continuum states),  during the - 
col l i s ion  process other s t a t e s  (referred t o  as  closed channels 

or d i scre te  bound s t a t e s )  w i l l  become temporarily excited. These 

temporary exci ta t ions are  responsible for  resonance processes, 

The mathematical s t r u c t u r e  of U ( t , t o )  contains a description of 

a l l  such processes, although t h i s  is  not obvious from Eq. (2.6). 



* +  -15- 

B. The Lippmann-Schwinger Equation 

As energy measurements sharpen, one ult imately replaces 

the wave-packet p ro jec t i l e  with monochromatic wave t r a ins ;  a t  

a la rge  distance f r o m  the target  these t r a i n s  consis t  of incom- 

ing plane waves and outgoing spherical  waves. 

have the form, a t  a l l  times. 

These wave t r a i n s  

50 where ?Ti is  an eigenstate of t he  t o t a l  Hamiltonian: 

+ (Ho + V - Ea)Ya = 0 . 

Equation (2 . 10) and the  boundary condition, t h a t  scattered 

waves should ult imately move spherically outward from the ta rge t ,  

are commonly combined i n t o  the Lippmann-Schwinger equation: 20 

This symbolic operator equation stands for  an in tegra l  equation, 

i n  which q 3 0" a f t e r  integration. 

point ,  such an in t eg ra l  m e a n s Y s 1  for an a r b i t r a r y  function F (E) ,  

From an operational stand- 

(2.9) 

(2.10) 

(2.11) 

(2.12) 
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I 

where s denotes a sum over states excluding these with 
b 
(the Cauchy principle-part of the in tegra l  over d . Eb = Ea %) 

Thus the requirement for outgoing scat tered waves leads t o  8 

(2.14) i 
I 

0 I 
However, unlike the  eigenstates of H , these "perturbed" scatter- j 

ing states do not f o r m  a complete set ,  since they do not include 

The wave function for  a closed channels (i.e., bound states) .  26 

8 bound state is concentrated near the t a rge t  and so cannot be 

observed a t  large pro jec t i le  separation. I 

Equation (2.13) provides an in tegra l  equation fo r  the scat- i 8 
8 

8 
8 
8 

+ t e r ing  state Ha. 

t ion,  using the def in i t ions  

It is more convenient t o  transform that equa- 

54  

and the  iden t i ty  



i' 
r .  

-17- 

into the operator equation 

-.-E: = *& + GIE-1 +* . 

This formula places the disturbing influence of the interaction 

V into the operator G(E) rather than into the wavefunction 'iE't. 
As a third alternativet one can introduce the reaction 

55 operator Y(E) 

J(E) = v + VG(E)V 

and then write Eq. (2.17) as 

(E) has the matrix elements 

The scattering description is n m  contained in the structure 

of the reaction operator Y(E),  a non-Hermitian many-particle 

"effective interaction." 

The connection between the S-matrix, and the quantities 

Ya or G(E) or Y(E), becomes apparent when Eq. (2.9) is rewritten 

in terms of basis states: 

* 
+ 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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8 

J 
I 

J 
b 

20 In  the l i m i t  t + OD t h i s  becomes 

I b 

20 The sca t te r ing  m a t r i x  of Eq. (2 .8 )  can thus be recognized as 

The delta function 6(Ea - 5) i n su res  energy conservation i n  the 

co l l i s ion ;  only m a t r i x  elements of % S between states of equal 

energy are required. 56 

C Observable Quant i t ies  

The physical content of the * S-matrix is best displayed by 

rewriting Eq. (2.9) as 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

One can then see that the incident component 3 a gives rise t o  

a transmitted wave, 
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and scattered waves 

The transmitted wave 9 trans is a l te red  i n  phase and diminished 

i n  amplitude compared with 3 . Components of the scattered 

wave J/ 

momentum or  i n  other quantum-nuniber labels. 

a 

a 
s c a t t  
a d i f f e r  from qa i n  propagation direct ion or in angular 

The requirement 

that  S be a unitary matrix, 20 - 
f- 

expresses the fac t  tha t ,  i f  f lux is t o  be conserved, scat ter ings 

in to  s t a t e  9 m u s t  deplete the i n i t i a l  s t a t e  3,. b 
51 With the a id  of the formula 

one can wri te  the probability fo r  a t rans i t ion  a + b # a during 

20 the co l l i s ion  interval  (t + - 00 t o  t + 00) as 

(2.25) 

(2.26) 

(2.27) 

(2.28) 
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T h i s  probabili ty increases a t  the constant rate w I f  Fa 

denotes the  f lux  of incident pro jec t i les  i n  state J/ then the 

cross section fo r  the process a + b f a, defined as 

a + b’ 

a’ 
57 

20-23958 can be wri t ten,  as is wel l  known, 

For example, i f  the labe ls  - a and 

pro jec t i le  motion, o ( a  -+ b) gives the angular d i s t r ibu t ion  

include the  d i rec t ion  of 

of the sca t te r ing  process. 

Macroscopic d e s c r i p t i ~ n s ~ ~ - ~ ~  of wave propagation commonly 

employ an index of refract ion (or a d i e l e c t r i c  constant) t o  

express the influence of the propagation m e d i u m  on the incident 

wave. A plane wave propagating along the z-axis through vacuum 

has the form 

(2.30) 

(2.32) 



i’ -21- 

When passing through a uniform medium, the propagation vector 

k alters t o  3, where is the (complex) index of refract ion,  

A t h in  slab of matter, of thickness dz, changes the incident 

plane wave $ ( z , t )  t o  a transmitted wave plus a scat tered wave: 

where 

The in t ens i ty  of this transmitted wave diminishes exponentially 

with a decay constant (or absorption coeff ic ient)  defined as  No, 

where N is the density of absorbers and (J is the attenuation 

cross section: 

Therefore (n” - 1) may be written: 
rcc 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

59 The real par t ,  (n - l), is the r e f r ac t iv i ty ,  the complex part, 

(b30/2k), is proportional to the absorption coef f ic ien t .  For a 
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I 
' I  
1 
1 
8 
I 
I 
8 

' 8  
8 
8 
8 
I 
8 

I 8 
8 

t h in  slab,  the exponential may be expanded as a power series 

i n  dz, giving 

To connect t h i s  description with the S-matrix, one may again 

use formula (2.28) and write  Eq. (2.25) as 

n.t 

trans 

The inf ini tes imal  change of a f lux F 

Here, as i n  Eq. (2.29), $a 

i n f i n i t e  in te rva l  Jdt .  

changes a t  a steady rate over the 

a 

(pro jec t i les  per cm2 per sec) passing through a m e d i u m  of density 

N ( targets  per cm') may then be writ ten a 

61 
Thus the  index of refraction may be ident i f ied  as 

The subscript  2 denotes the pro jec t i l e  state (e.g., energy and 

polarization) as w e l l  as the t a rge t  state. 

(2.38) 

(2.39) 
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Equation (2 -42) gives the r e f r ac t iv i ty  

and the attenuation cross section 

(2.41) 

(2.42) 

20 The conventional proof of Eiq. (2.42), often referred to as 

t he  opt ica l  theorem of Bohr, Peierls, and Placzek,62 relies 

on the f a c t  t h a t  attenuation is the sum of a l l  the processes 

that remove a p ro jec t i l e  from state qa. 

sect ion is therefore the sum of a l l  possible sca t te r ing  and 

reaction cross-sections, 

The attenuation cross4 

(2.43) 

Equation (2.42) then obtains when one employs the uni tary 

re la t ion ,  Eq. (2.27) . 
From Eq. (2.40) it follows tha t ,  when Taa has the frequency 

dependence 
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the  abosrption coef f ic ien t  is obtained from 

and the  r e f r ac t iv i ty  is 

(2.44) 

(2.45) 

These formulas provide a connection between attenuation measure- 

ments and r e f r a c i t i v i t y  measurementsy 63 par t icu lar ly  u s e f u l  for  

autoionizing l ines  (for which A is generally not zero) .  They are, 

(2 -46) 

of coursey simply special  cases of the 

relations64 obtained from the  r e a l  and 

equatson: 

mamers -Kronig dispersion 

imaginary par ts  of the 

dw’ 

When 121 is close to  unity, the d i e l e c t r i c  constant E and 
UL- a 

65 polar izabi l i ty  CY,= may be obtained from 

(2.47) ~ 
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In  practice,  one usually observes a cross section or  

r e f r a c t i v i t y  averaged over some degenerate set of i n i t i a l  

states, say & , which may include p ro jec t i l e  polarization 

and various angular-momentum quantum numbers of the ta rge t .  

The relevant quant i t ies  a r e  then 

where the statist ical  weight is  the number of states included 

i n  the set  : 

and N is  the t o t a l  number of ta rge ts  

(2.49) 

(2.50) 

(2.51) 

(2.52) 

(2 . 53) 
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I 
N 
8 

Hitherto, attenuation profiles have usually been deter- 

mined from Eq. (2.43). Often a particular process dominates 

the scattering, and an accurate attenuation cross-section 

obtains from only one or two terms in the summation. The 

present paper points out the usefulness of Eq. (2.42) as a 

starting point for calculations. 

D. Resonances 
t 

In principle, the S-matrix (or * or G )  contain a complete 

description of all possible collision processes, but practical 

c\, 

difficulties often intervene when one attempts to extract the 

information . 
66 

As Siegert pointed out, the analytic properties of the 

scattering matrix lead to cross-section profiles of the form 
67 of Eq. (1.1). More recently, the Mittag-Leffler expansion 

of a function in rational fractions, 

n 

has been used as the basis for an elaborate parameterization 

of S ( E )  by Humblet and Rosenfeld. 2* 

proven fruitful in formal investigations6* it does not by itself 

provide a complete prescription for computing the relevant 

parameters. 

While such an approach has 
I 

(2.54) 
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A second avenue of approach makes u s e  of appropriate I 

joining conditions for  wave functions a t  the boundary of the 

interact ion region. 

I 

I 

I H e r e  too, the formalism has provided 69-71 

a useful parameterization of nuclear reactions. 

I n  atomic processes, where the nature of the  interact ion 

between par t ic les  is w e l l  known, it has proven more useful t o  

I r e l a t e  scat ter ing amplitudes with matrix elements. 

resonance processes, it is only necessary to  par t i t ion  the basis 

s t a t e s  i n to  two classes.  This  par t i t ioning is most eas i ly  

carr ied out with the a id  of projection operators7* defined by 

To describe 

I 

I 

p== 0 ,  s' = 9 Y 
P Q = Q P  =O. 

Qui te  simply, QY is the component of the s t a t e  Y contained in 

some selected subspace ( to  be referred t o  as closed channels, 

resonance s t a t e s ,  or  bound s t a t e s ) ,  and PY is the remainder 

( to  be called open channels or  continuum s t a t e s ) .  

point is tha t  the i n i t i a l  s t a t e  is contained en t i r e ly  i n  PY: 

QY contains no component of t h i s  s t a t e .  

of Q Y  w i l l  be discussed below. 

write the Hamiltonian as 

The essent ia l  

A precise specification 

I f  we now follow Messiah74 and 

(2.55) 

( 2 . 5 6 )  



. -  -28- 

and use  the identity 

It is easy to  verify that 75 

76 where 

Equations (2-58) express the operator G in  terms of the more 

restricted operators Sp and QGQ. 

substituting the above expression for PGQ into 

In turn, QGQ may be found by 

Q(E - H)GQ = Q 

to obtain 

(2-57) 

(2.58a) 

(2.58b) 

( 2 . 5 8 ~ )  

(2 59) 

(2.60) ~ 

~ 
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0 If now w e  w r i t e  H = H 

eigenstates of H , 

+ V, and require that basis states be 

0 

0 0 PH Q = QH P = 0 ,  

(2.61) ~ 

I then w e  can w r i t e  the 3 operator (Eq. (2.18)) a s  I 

This equation can be written more succinctly by introducing the 

operator 76 

k z A ( P , E )  = V + V 7 V  . 
P 

(2.65) 
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The reaction operator i s  then writ ten: 77 

(2.66) 

This  equation permits a use fu l  physical interpretat ion of the 

reaction operator J .~ ’  
the absence of a selected collection of states Q .  

me f i r s t  t e r m ,  j t ,  gives sca t te r ing  i n  

Physically, 

t h i s  corresponds t o  d i r e c t  reactions and potent ia l  scattering: 

It is a many-particle generalization of the opt ica l  potential .  73 

The second term describes t h e  influence of the states Q ,  and it 

gives rise t o  resonances. 

To see t h i s  resonance s t ructure  most c lear ly ,  suppose Q 

0 projects only a sinqle  bound eigenstate of H , qn, which is 

orthogonal t o  a l l  remaining states: 40 

(2.67a) 

(HO- e,, )*,, = o (2.67b) 

men the elements of 3 are 

(2.68) 

Since matrix elements of 2 are complex quant i t ies ,  this expression 
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can be w r i t t e n :  

vary only slowly w i t h  energy over an in te rva l  near E = e 

one can speak of a resonance a t  energy E (e ) w i t h  a width r (e ) .  

then nJ 

n n  n n  

More generally, i f  Q projects out several  (or a l l )  closed 

channels, the 3 matrix has the form 

(2.70b)‘ 

L 
“ r  m 

The scattering resonances contained i n  the second t e r m  of 

Eq. (2 -66 )  a r e  basically t9nany-channel” resonances that e x i s t  

because of the coupling between the incident channel and other 

channels. Such resonances include the familiar absorption l i n e s  

of atoms. Huwever, another type of broad resonance-like varia- 

t i on  i n  sca t te r ing  amplitudes can or iginate  in the potent ia l  

sca t te r ing  term <qb Ib 13, > . Such single-channel “resonances” 
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o r  size-resonances can occur a t  incident energies which p e r m i t  

an in tegra l  number of nodes for  the pro jec t i le  wave function 

within a complex potential-well. 

Several methods might be used t o  evaluate Eq. (2.71). 

For example, one could obtain the m a t r i x  of (E - Ho - I t )  i n  some 

simple basis and then invert  this m a t r i x .  75 I n  the present paper, 

I shall evaluate Eq, (2.71) by obtaining 7 8  (approximately) states 

t h a t  s a t i s f y  the equation 

Then Tba becomes 

u 

where %(E) and rx(E) are given by 

I f  Q includes a l l  bound states, then each of these contributes 

a resonance to  T ba' 

notation for  m a t r i x  elements o f i t ,  
For simplicity,  I s h a l l  employ a subscript  

(2.74a) 

(2.74b) 
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Subscripts a and b refer to open channels, subscript K refers 

to  a closed channel or resonance s tate .  

to  w r i t e  

It  also proves useful 

and tKa as the sum of two Hermitian parts: 79 
t b K  

With th is  notation, Eq. (2 .73)  reads: 

(2.75a) 

(2.75b) 

(2.75~) 

(2.76) 

(2.77) 
E - e, - t&k 

k 

In particular, the diagonal elements are 
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by defining the following quantities (all dependent on E 5 Ea): 

eK + dso ILk) 

Then the attenuation cross-section becomes 

while the refractivity is 

N e a r  an isolated resonance one term dominates the summations 

in Eq. (2.81) and we can write 

(2.80) 

(2.81) 

(2.82) 

(2.83) 

(2.84) 

(2.85) 1 

~ 

I 

I 
I 

I 

(2.86a) 

~ 

(2.87a 
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t 
f 

a-(&) = L, + 
( E - E , ) ~  + (i',J2)z 

N where, with the assumption tha t  a l l  other resoncance widths I' 

are much smaller than the separation between levels ,  

c, = c 

b, = 0 

The incident ene ra  

(2.86b) 

(2.87b) 

(2 -88) 

~ 

(2.89) 

E f E mus, be apportioned between p ro jec t i l e  a 

and target. I n i t i a l l y ,  the t a r g e t  is i n  a d i sc re t e  state ( typical ly  I 

the  ground state) with energy E so t h a t  E may be wri t ten I' 

E =  E~ + =projec t i le  

The p ro jec t i l e  energy e 

values. 

takes a continuum of posit ive pro jec t i le  

For reactions induced by a s ingle  incident photon, t h i s  

(2.90a) 

I 
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expression reads 

E = E I + i i o , o  (2 .gob) 1 
I 

Thus one obtains, for  photons, 

w h e r e  

The l abe la  is retained as a reminder that these quant i t ies  

depend on properties other than photon frequency: 

€ K -  €I = *WC= - 
they depend 

on i n i t i a l  target-s ta te  and on photon polarization. 

It should be noted that the m a t r i x  element of (E - Ho -Q$Q)-l 
takes the simple form 

only if (Dk s a t i s f i e s  Eq. (2.72). 

section, this condition generally requires one t o  diagonalize the 

matrix of V between degenerate (or nearly degenerate) states. 

I f  t h i s  diagonalization is not carried out, the denominator of 

As I discuss i n  the following 

(2.93) 
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Fq. (2.85) no longer re-ains this simF 

elements became 80 

e form; the matrix 

(2.94) 

For example, if two levels 0 and (3 lie close together, E q .  (2.86) 

gives the elements 
K L 

1 
i 

where 

KK ffear the resonance frequency E = %, the correction to t 

becomes approximately 

Thus the correction q ( E )  cannot be neglected if the coupling 

(2.95a) 

(2,9533) 

(2.96) 

(2 . 97) 
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t 

discusses t h i s  point i n  de ta i l .  

is large or i f  the resonances a r e  closely spaced. M a w e r  77 LK 

It should also be noted t h a t  the present approach predicts 

a resonance width which is a property of the resonance state alone 

ra ther  than a width which depends on the  i n i t i a l  state as w e l l .  

( In  the Weisskopf-Wigner theory15 the  observed width is  the sum 

of widths for  i n i t i a l  and f i n a l  s t a t e s . )  This is  because I assume 

the i n i t i a l  s tate persisted indef in i te ly  i n  the past, i.e. has a 

negligible width. 

of the i n i t i a l  state. 

A more refined approach would include the decay 

The task of reaction theory is two-fold: first, t o  provide 

a realistic parameterization of cross-sections; and second, t o  

o f f e r  means of predicting and interpret ing the parameters. The 

preceeding equations a r e  an attempt t o  f u l f i l l  the first task and 

t o  connect observed prof i les  w i t h  atomic m a t r i x  elements. In  the 

next section I s h a l l  address the second task. 
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111. 

A. Formulation 

PERTURBATION THEORY APPLIED TO COLLISIONS 

While Eq. ( 2 . 7 8 ) ,  like the Lippmann-Schwhger equation, 

is an "exact" equation, actual calculations require the intro- 

duction of approximations; the many-body scattering problem 

is no more soluble then the many-body Schrsinger equation. 

Perturbation theory (suitably formulated) has proven quite 

accurate in conventional calculations of atomic properties, 

including radiative effects, and one anticipates this accuracy 

will carry over to scattering problems. 

For simplicity, I shall neglect degeneracy for the 

moment, and will omit identification subscripts on states. 

This deficiency is removed in section 111-C. 

We seek a solution to the Schrodinger-like equation 

0 (where 6 is a complex number) in a basis of eigenstates of H : 

(H"- e > Y  = o .  
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As a first step, the operator 

calculable f o r m ,  

= V&r V must be expressed in a P 

This can be done by use of the expansion 

The application of conventional Rayleigh-Schrodinger per- 

81 turbation theory to Eq. (3.1) by use of the expansion 

and the condition (for states of the same energy) 1 
I 
8 
1 
8 

leads to the sequence of equations: 

(3.4a) 

(3.4b) 

(3.51 
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It then follows that, t o  second order, CP is given by: 

where ,p(" is an eigenstate of the unperturbed Hamiltonian, 

( - e CQ'O' = o ,  

0 
and Q removes the cp ('1 component of Q: 

Q" = i - ICQ'"') <,lot 1 . 

To second order, 1 is 

E = ( ' o c o ~ (  H o + V  \qCo ' )  

From the discussion i n  part I, it is  c l ea r  t ha t  i n t e re s t  

i n  the 7 m a t r i x  extends beyond the calculation of positions and 

widths of resonances. Details of resonance prof i les  depend on 

the elements of $between a resonance state @ and a continuum 
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state  $. Equations (3 .3 )  and (3 .7 )  give these, to second 

order, as 

Third-order corrections to & and <$ I,tl 

elements of the operator 

> come from matrix 

e-  H" Et -Hb 

(3.11) 

(3.12) 
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B. B a s i s  States 

A t  this stage, it is useful t o  introduce a set of basis 

states -- eigenstates of H -- and t o  shuw how the pa r t i t i on  0 

i n t o  P and Q may be made, 

0 I s h a l l  assume that H is the sum of Hermitian single- 

p a r t i c l e  operators** A( i )  , 

whose degenerate eigenstates s a t i s f y  the equation 

The product of such single-particle states, the product-state 

u, (1) u Q (1) - *  * u (Nl j $ 

0 is  an eigenstate of R with eigenvalue 

P + - - -  + € 5  ’ e, = c A  t e 

B a s i s  states can be constructed from l i nea r  combinations of 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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degenerate product states; an N - p a r t i c l e  basis s t a t e  has the 

form 

I s h a l l  assume t h i s  construction has incorporated the require- 

ments that  la > be symmetric i n  boson coordinates and a n t i -  

symmetric i n  fermion coordinates. 83 

include the coupling of single-particle angular-momentum, but it 

does - not include configuration mixing. 

single-particle quantum-numbers and co l lec t ive  quantum-numbers. 

The construction may a l so  

The label g spec i f ies  

Single-particle states f a l l  i n t o  two classes, distinguished 

by t h e i r  single-particle energies.84 When E is  negative, it 

takes only d iscre te  values: the wave function u (r) then f a l l s  

U 

a -  

off  exponentially a t  la rge  distances, and one has a bound single- 

particle state. When E is posit ive,  it can take any value; 

the wavefunction u (r) then describes a wave t r a i n  a t  in f in i ty ,  

and one has a continuum single-particle state. 

U 

a *  

Given a collection of product states, one can recognize I 

those products that a r e  composed en t i r e ly  of bound single- 
1 

i 
particle states ( to  be denoted by labe ls  k, my or  n ) .  I s h a l l  

ca l l  this subset the closed-channel states, and w r i t e  
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L 
n 

The remaining collection of states (to be denoted by labels 

a, by cy or d) comprise the open-channel states, 

P = s Ic>(cI 
C 

Each open-channel state I C  ) has at least one single-particle 
continuum-state; each closed-channel state In > is built from 
bound single-particle states. 

As Part N will discuss, the inclusion of photon projec- 

tiles introduces no fundamental difficulty. Let the index y 

stand for frequency, polarization, and propagation vector. 

Then each free-field photon satisfies an equation of the form 

(3.18) 

(3. 19) 

where E = m . The Hamiltonian Ho can then be written 
Y Y 

i 1 



* .  

II 
I .  

8 
8 
8 

4 6 -  

and the preceding arguments apply. 

be taken from a photon Fock-space. 85-86 

product states with no photons, one photon, two photons,. . ., etc. 

The label a on a basis s t a t e  must now list the number of photons 

of each type y t h a t  are present i n  the f i e l d ,  as w e l l  as specify 

the state of the atom. 

The basis states must now 

T h a t  is, one requires 

I f  w e  are concerned with processes that occur when a s ingle  

photon encounters a ta rge t ,  then we can define closed channels 

as those product states that have no photons; 

t h a t  have one o r  more photons are then open channels. 

over continuum states becomes a sum over atomic s t a t e s  and a 

a l l  product states 

The sum 

sum over photon s t a t e s ,  

while the sum over d i sc re t e  s t a t e s  and resonance states is 

simply a sum over atanic quantum-nwibers. 



i .  * 4 7 -  

8 
I 

C. Resonance States 

The zero-order approximation q) (O)  t o  the resonance s t a t e  CP 

is, l i k e  the basis states, an eigenstate of H 0 . However, it 

does not follow that cp(O) must be a par t icular  basis state, 

bas i s  states are, i n  general, degenerate. Therefore the zero- 

order s t a t e s  must be chosen to  diagonalize the matrix of V 

between degenerate s t a t e s .  87 

plished by constructing antisymmetrized angular-momentum basis 

states (Eq. (3.17)), but  further configuration degeneracy may 

s t i l l  remain. 

t o  coincide with these zero-order states. In  practice, it is 

of ten u s e f u l  t o  retain the or iginal  basis s t a t e s  and introduce 

mixing coefficients:  

The 

A par t i a l  diagonalization is accom- 

In principle, one can redefine the basis s t a t e s  88 

(3.23) 

The mixing coeff ic ients  ( K l k )  which connect the zero-order 

resonance states IK > with the or iginal  basis-s ta tes  Ik > are  

obtained by solving the equations 

L 

kk' 
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between degenerate zero-order states. M a t r i x  elements t o  zero- 

order states w i l l  be denoted by capi ta l s  K, L, M, N; elements 

t o  the  undiagonalized basis states w i l l  have lower case labels 

k, 1, my n. 

The f i r s t -order  correction t o  ~ p ( ~ ) ,  as prescribed by Eq. K 

(3.3), is 

Thus the  resonance s t a t e  is, t o  f i r s t  order, 

(3.25) 

(3.26) 

The resonance energy, t o  second order, is 

( ~ l h ) < ~ l k ' )  

(3.27a) 

E.(€) = ek 

hh' 

4 a\ v I h > 4nl  v Ik', + 

+ 1 d n 
e,-e, 

while the resonance width, t o  second order (using e(3))  , is 

(3.282) 

h d 



I - -  

4 9 -  

The appearance of E (the i n i t i a l  energy i n  the sca t te r ing  

problem) i n  these expressions for  %(E) and r K ( E )  means that, 

as formulated here, the resonance parameters depend on incident 

energy . 
c ien t ly  

In 

However, this dependence may be neglected over a su f f i -  

eke small energy interval  near E = 

turn, the perturbation equations give the direct-reaction 

background from the approximations 

(3.29) 

(3.30) 

and the resonance-scattering properties from 
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The preceding expressions simplify s l ight ly  i f  one takes 

matrix elements t o  the zero-order resonance-state 1K > rather 

than t o  the basis states  Ik >. The equati-then become: 

E, - 

- r, - 

h b 

7 

n 

J 
L 

(3.32b) 

To lowest order, the resonance parameters 4( and BK of Eqs. (2.80) 

and (2.81) are given by: 
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I 

(3 .33)  

To luwest order, the  bac 

90 and (2.89)) comes from 

round for  an isolated leve l  (Eqs. (2.88) 3 

c. J U f K  

J 

The preceding formlas, taken with Eqs. (2.79)-(2.80) of 

t he  previous section, provide a l i n k  between observed resonance I 
I 
II 

prof i les  and calculable m a t r i x  elements. 

theory approach, each matrix element may be interpreted as the 

amplitude for  a part icular  type  of process. 91 

With the perturbation- 

Specifically:  

(3.35) 

I 

(3.36) 
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<alVla > gives forward elastic scattering, 

<a IV I c > describes potential scattering (or direct 

reactions) from one open channel directly i to another open channel, 
describes capture from an open channel to 

a resonance state, 

the decay-of a resonance state into an 

By examining the matrix-element structure of the quantities 

Ax, BKJ rK, etc. (Eqs. (2.80)) one can picture a sequence of 

elementary events that "cause" pkJ B~~ rKJ etc. 

For exampleJ the first approximation to the resonance 

25 width is 

J 
C 

This is the sum of terms 2ab(E - Ec) I<c lVlK > 1 2 ,  each of which 

gives the probability per unit time for decay of the state q 

into a continuum state qCJ conserving energy. 

( 0 )  
K 

92 

The direct-reaction contribution to the attenuation cross- 

section is 

(3.37) 
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‘ 1  This expression 

for scattering from incident state 3 

states qC, conserving energy. 

is simply the first Bornapproximation 

to all possible continuum a 
93 

Similarly, the first part of BKy 

(3.38) 

(3.39) ~ 

gives the probability for a transition from the discrete resonance 

(O) into the continuum 3, (or the probability of capture K state cp 

from qa to qK ( O ) ) .  m e  parameter +, as well as the negative part 
of B 

I 

I 

depends on the matrix element 
K J  

(3.40) 

This quantity vanishes unless appreciable scattering occurs from 

the continuum $a into the continuum JI,, at the same energy. 
94 

One can then see that a finite or negative B K indicates 

appreciable continuum scattering. 

in the profiles of neutron-attenuation cross-sections. 

s-wave part of an incident neutron beam suffers appreciable elastic 

~n illustrative example occurs 

only the 
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scattering: the angular-momentum barrier diminishes contact 

between the nucleus and higher partial waves. 

s-wave resonance-profiles display the marked asymmetry associated 

with a finite % parameter. 95 Figure 2, taken from the work of 

Peterson, Barshall, and Bockelman, 96 i l lustrates  the striking 

difference between s-wave and higher partial-wave resonances i n  

the attenuation of neutrons. 

Hence only 
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IV. PHOTON COLLISIONS 

A. The Hamiltonian 

As a specific example of the preceding general results, 

consider an atom interacting with a radiation field. '' The 

Hamiltonian for this system splits into four parts: 

describes the free 0 0 

Hrad + n ~ -  describes the isolated atom, 'atom 

radiation-field, and Vrad governs the interaction between radi- 

ation and the atom. 

The "unperturbed" atomic Hamiltonian, 

is implicitly defined when one chooses a set of single-electron 

states or orbitals, u (i) . (Typically, these orbitals are hydro- 
a 

genic or Hartree-Fock orbitals.) 

isolated-atom Hamiltonian. 

relativistic effects can be neglected, this Hamiltonian is 

Then N is the remainder of the 

When magnetic interactions and other 
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8 
f 

H0 atom 
c i t< i  

I n  practice, wdescr ibes  part o r  a l l  of the inter-electron 

coulomb repulsion; with a more exact atomic Hamiltonian it 

w i l l  include spindependent t e r m s .  100 

The radiation f i e l d  is  a collection of photons, each dis- 

tinguished by an index y denoting frequency, polarization, and 

other properties. 

f i e l d  E (r)da magnetic f i e ld  k (r), or a vector potential  A (r): 

A photon is characterized by an e l e c t r i c  

*Y * -Y - -7 - 

(4.3) 

(4.4) 

2 The free radiation-field has I C  (r) l 2  equal t o  1 %  (I) I , a d  

the Hamiltonian may be written 
-Y c\J -Y - 
86,98 

(4.5) 

Wtih neglect of magnetic interactions, the interact ion between 

photons and electrons may be described by the t e r m  101 

(4.6) 
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B. Photon Fock-Space 

The photon F o ~ k - s p a c e ~ ~  consis ts  of bas i s  s t a t e s  which 

have no photons, 

in) z i n p >  , 

states with N photons of type  y, 
Y 

I n , N r )  3 I =, 1J, > j 

and states where various types of photons are present, 

Here, an3 i n  the following section, labels n and c re fer  t o  

d iscre te  and continuum atomic s t a t e s .  A s t a t e  with N iden- 

tical photons, 
Y 

s a t i s f i e s  the equation 

(4.7a) 

(4.7b) , 
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with E = N 
Y Y Y* 

I n  wri t ing sums over possible states of the system, one 

must include states of the radiation f i e ld .  The previous con- 

tinuum summation, Eq. (3.22), becomes a summation over the atomic 

continuum and a summation over the photon states: 

We are concerned with col l is ion processes t h a t  occur t o  

a ta rge t  atom i n  theAdiscrete-state ,p(*). For a photon pro- 

j e c t i l e ,  the incident s t a t e  $, of preceding sections becomes 

.#&id 
I 

One can then define the closed channels as those d iscre te  

atomic states with no photons, 

(4. l l a )  
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c 
I 

More generally, one may wish  t o  consider processes i n i t i a t e d  

by N ident ica l  photons: 102 
Y 

It is then more appropriate to require t h a t  a l l  closed-channel 

states include a photon factor 1 (N - l)r >: 

0 The operator Hrad is  diagonal i n  Fock-space, and has the 

86 non-zero matrix-elements 

(The continuum labe l  a may be replaced by a d iscre te  state 

labe l  n.) The operator E (r) has non-zero matrix-elements only 

between states that d i f f e r  by the presence of one photon: 
-7 * 

103 

I 
(4 . 13) 

I 
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(the labels a and b may be replaced by n and m). 

is a solut ion t o  the vector Helmholtz-equation, 

normalized t o  s a t i s f y  the condition 

Usually the u (r) f i e l d s  are chosen as transverse plane- 
‘LY ‘L 

waves. 

( w i t h l k l =  u/c) and polarization E (with k E = 0 )  : 

The label y then specif ies  the propagation vector k 
‘L 

.c* * ‘ L ‘ L  

with t h i s  choice of normalization, the incident f lux  F 
Y 

(4.14a) 

(4.14b) 

(4.15) 

I 
I 

(4.16) ~ 

(4.17) 
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(assuming one incident photon) and the  summation over photon 

indices become 

t 
c 

F = C )  
5kn 

where c is the speed of l igh t .  

(4.18) 

However, atomic t rans i t ions  occur between states of w e l l -  

defined par i ty  and total  angular momentum. It therefore proves 

useful t o  take the U (r) f i e lds  as transverse multipole-fields 

characterized by frequency OJ, par i ty  (e  f o r  electric m u l t i p l e s ,  

104-108 
-Y - 

m f o r  magnetic m u l t i p l e s )  multipole order 1, and angular-momentum 

component p : 

where L is t h e  orbital  angular-momentum operator. For such 

f i e l d s  one has 108-109 (assuming a s ingle  incident photon) 

- 

(4.19a) 

(4.19b) 



105 and also 

Near the atom, 

field predominates, 

k "El. 

where kr << 1, the electric-dipole 
and matrix elements of the operator 

or el 

(4.20) I 

(4.21b) 

(4.22) 

+lJ are responsible for the major transitions. Here {e 1 e 
- P  

e are unit circular-polarization vectors. lo6-lo7 To simplify eoJ -1 
110 the follawing discussion, I shall consider only el photons: 

the summation over photon states then reduces to a summation over 

three polarizations and integration over frequency: 

(4.23) 
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This approximation i s  equivalent to  se t t i ng  exp(ikr) 2 1 with 

plane-wave photons. 

It w i l l  prove useful t o  introduce the atomic dipole- 

m o m e n t  operator 

and to employ uni t s  such that 

where a is Sommerfeld's Fine-Structure Constant. I-'' only the 

matrix elements linking one-photon s t a t e s  with two-photon and 

no-photon states w i l l  be required here: these are: 

(4.24) 

(4 . 25) 

(4.26a) 

(4 . 26b) 

( 4 . 2 6 ~ )  



C .  A t o m i c  Basis Sta tes  

The energies of resonance states are determined largely 

by the atoaaic Hamiltonian H:tom + w :  

Radiative corrections, such as the Lamb s h i f t ,  are s m a l l  and 

w i l l  be neglected here. This expression applies both to  

autoionizing and non-autoionizing states. 

The quantity %(a) depends s l i g h t l y  on excitation con- 

d i t i ons  (the incident-photon energy LD) through the occurrence 

of Ea = E 

one may subs t i tu te  e o r  E for  Ea resonance energy a = am, 

i n  this sum, and so recover the usual second-order perturbation 

+ 01) i n  the l a s t  summation. For photons near the I 
* 

K K 

expression. 

In  principle,  the taek of constructing autoionizing states 

does not d i f f e r  s ignif icant ly  from the familiar task of con- 

s t ruc t ing  ordinary excited states. In an isolated atom, the 

major portion of wcomes from the inter-electron Coulomb repul- 

sion, possibly modified by an ef fec t ive  central-field potential .  

(4.27) 
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Additional smaller magnetic interact ions,  such as the spin-orbit 

interact ion,  may a l so  need to  be considered. 

These remarks suggest '13 that one should choose the atomic 

2 2 basis states t o  be eigenstates of S , the  t o t a l  spin: L , the  

t o t a l  orbital  angular momentum: J , the total  angular momentum: 

and Jz = Joy one component of J. 

* * 
2 

* 

* 

Many treatises discuss the construction of bound many- 

particle angular-momentum states (coupled states) from products 

of single-particle s t a t e s  (or orbitals) .  '14 I sha l l  assume the 

o r b i t a l s  have the conventional form 

(4.28) 

where y a m ( R )  is a spherical  harmonic, 5 (s ) is a spin-q function, 

and R E e ( r )  is a rad ia l  function. 

LI, 

When E i s  negative (so t ha t  

U (i) describes a bound o rb i t a l ) ,  it takes only selected d is -  

Crete values; R 

integer .  I sha l l  assume the bound functions s a t i s f y  the condition 

EV am 
(r) may then be wri t ten R n 4 ( r )  , where n is an 

€1 

(4.29a) 
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although orthogonality is not essent ia l .  

it can take a continuum of values. 

functions s a t i s f y  the  energy-normalization condition 

When E is posit ive,  

I sha l l  assume the continuum 

and t h a t  they are orthogonal t o  the bound functions, 

(4.29b) 

The expansion coef f ic ien ts  of Eq. (3.17), which connect a coupled 

state with uncoupled product functions, are products of vector- 

coupling (Clebsch-Gordan) coefficients;  114-115 the s ing le  label K, 

hi ther to  used t o  ident i fy  the set  of quantum number labels, must 

now be replaced by labels KSLTM: 

(4.30)’ 

To f i r s t  order, these states have energies given by diagonal 

matrix elements of Hatom + d: 0 

E k S L T k \  = < K S L J M  \ Hehrn \KSLJM> 

+ (KSLJM 1 W KsLTM) .  

(4.31) 

(4.32) 
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0 is independent of spin and i f  the magnetic-interaction If Hatom 

contributions t o  wcan be ignored, t h i s  energy is the so-called 

term-energyy '13 independent of J as w e l l  as M: 

(4.33) 

H e r e  I have employed the reduced matrix 116 of a scalar operator, 117 

HmeverY when one considers excited states of heavy atoms, the 

fine-structure s p l i t t i n g  of d i f f e ren t  J-levels can no longer be 

ignored. One then employs the formula 

(4.34) 

(4 . 35) 

t o  account for effects of t h e  spin-orbi t  interact ion ,VI. 

Once one has constructed such coupled states of an N-electron 

atom, one can readi ly  construct (N + 1)-electron states by coup- 

l i n g  an additional orbital onto a "core" of N electrons.  When 

e l ec t ros t a t i c  interactions dominate, one follows the Russell- 

Saunders prescription113 t o  construct states of the form 
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(4.36a) 

where S L refers t o  the core, and nl! r e fe r s  to  the added 
0 0  

Hawever, when the fine-structure s p l i t t i n g  of 118 o r b i t a l  

the core becomes appreciable and the added o r b i t a l  is highly 

excited, it is more appropriate t o  use the so-called J-K coupling 

scheme 119-120 (also ca l led  Ja coupling 1 2 1  ):  

In  vector language, the o rb i t a l  angular-momentum 1 has been 

coupled onto J 

K t o  form J.  

p r i a t e  as one examines higher terms i n  a Rydberg series pro- 

gressing toward a series limit i n  a heavy atom: for  example, 

the two series 

t o  form K, then the spin 3 has been coupled onto 

Such a coupling scheme becomes par t icu lar ly  appro- 

0 

(4.36b) 
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The construction of continuum angular-momentum states 

proceeds in the same way, since continuum orbitals differ from 

bound orbitals only through their radial function. 

coupling procedures then provide a Russell-Saunders continuum, 

Conventional 

or a J-K continuum, 

The choice of a coupling scheme is largely a matter of con- 

venience, since the two schemes are related by a unitary 

I 

I 

I 
I 
I 

I 
I 

I 

I 
(4.37a)I 

I 

I 
(4.37b) 

I 

119-120 
transformation. 
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~ D. Resonance Widths 

+ K  has been Vrad Since the perturbation Hamiltonian V = 

- - separated i n t o  two contributions, the resonance width I' K 

- 2r&[tIcK] a l so  s p l i t s  i n t o  two parts: a radiativeiiecay 

w i d t h  r, (rad) , and an electron-decay or autoionizing w i d t h  

. To luwest order, the rad ia t ive  width for E l  

t rans i t ions  is (from Eqs. (4.26)) 

while the autoionizing w i d t h  i s  

AS usual, In > and I C  > denote d i scre te  and continuum atomic 

basis-states respectively. 

The radiat ive w i d t h  expresses the poss ib i l i ty  that the 

resonance state , p ( O )  w i l l  decay to  some other atomic s t a t e ,  

e i t he r  discrete or continuum, with the emission of a photon. 

K 

8 

(4 . 39) 
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The radiative width is finite for all excited bound states, 

since it is always possible to satisfy energy conservation in 

photon decay to a lower-lying bound state, if one accounts for 

higher electric- and magnetic-multipole radiation and for 

multi-photon decay, 

The autoionizing width expresses the possibility for an 

energy-conserving decay to an ionized state plus a free elec- 

tron; this condition can be met only when a level lies above 

the first ionization-limit, 

122 a. Radiative widths 

To write the radiative width in a more familiar form, 

we can employ angular-momentum states. 

polarization, ~1 = - 1, 0, + 1, and magnetic quantum-number 
M = - J, ..., + J, are then readily carried out with the aid 

The sums over photon 

106-107 
of the Wigner-Eckart theorem: 

Here I have introduced the statistical weight g 2JK K 

I 

b 

+ 1, 

(4 -40) 
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The square of the reduced matrix element <Kll Dll n > is often 
m 

denoted by S(K,n), the t ransi t ion strength of Condon and 

Shortley : 

c\r 

113 

Summation over the energy of the emitted photon then yields 

the  formula 

The sums over 

(4.41) 

c 
E,< €,tu 

(4.42) 

- J  
E,< 

f i n a l  states In > or  I C  > are such tha t  o E In  

EI - E and E El - E are posit ive,  The sums include a l l  

states t h a t  l i e  below 5 i n  energy, and those with energy up 

n C 

t o  E + (I). I 

The preceding r e s u l t s  presume t h a t  the incident state has 

(O) then K only a s ingle  incident photon. The resonance s t a t e  cp 

has no photons. For intense beams of radiation, one may con- 

sider an N -photon incident state I I , N  >. The radiat ive width 
Y Y 
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for the resonance state \K,(N-l) 
Y 

to B according to ms. (4.14). This proportionality expresses 

the fact that, in an intense field, induced transitions as well 

as spontaneous transitions will deplete an excited state. 

> then becomes proportional 
Y' 

The 

intense radiation shortens the lifetime of the excited state, 

and thereby increases the width. 

Near the resonance frequency 03 = 03 the radiative width 

takes the familiar form of the sum of the Einstein transition- 

probabilities from discrete state cp (') to all lawer-lying states, 

both discrete and continuum: 

inverse of the lifetime T 

KI' 

K 

that is, the natural width is the 

of the excited state: 17 K 

Hmever, away from resonance, the frequency dependence of I' (a) 

becomes significant. 123 

lying excited state and c p " )  is the ground state, the radiation 

width becomes 

K 

(O) is the lmest- K For example, when rp 

I 

(4.44) 
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8 -  

If w e  introduce the osc i l la tor  strength for  bound-bound 

absorption 124 

and the osc i l l a to r  strength fo r  bound-free absorption, 

125 the rad ia t ive  width a t  resonant frequency may be wri t ten 

In  general, the width is  the sum of osc i l l a to r  strengths t o  

several  lower-lying s t a t e s .  However, the radiat ive width of the 

lawest-lying excited state, a t  resonant frequency, is simply 126 

(4.45) 

(4.46) 

(4.47) 

(4.48) 
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Far bel- this resonance, CD << k, the width of this lowest 
state becomes 

b. Electron widths 

To lowest order, the electron width is 

(4 -49) 

(4 . 50) 

In the next approximation, the width is 

P 

n u s ,  the autoionizing width is governed by the matrix element 

(4.52a) 

which describes the autoionizing transition from the excited state 

(O)  to a continuum state 3, whose energy is Ec = E + CD. VK I 
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In the Russell-Saunders coupling scheme, these elements 

take the form 

When external fields are &sent, the largest part of Ncomes 

from the inter-electron coulomb repulsion, The non-zero matrix 

elements then become 

(4 , 52b] 

(4.52~) 

From this expression, one obtains White's127 selection rules 

for autoionizing transitions: 

4 5  = o ,  b L = O ,  AT 3 0 ,  bparitg = o . 
(4.53) 

That is, autoionization occurs when an excited state can mix 

with a continuum state having the same values for S, L, J, 

and parity. 

With energy-normalized radial functions, the autoionizing 

width in Russell-Saunders coupling is 
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where the summation goes over barred quantum--numbers, and the 

continuum energy E satisfies the condition 

Not all of the excited states whose energy lies above the first 

ionization limit can Satisfy these requirements. For example, 

12* lies above the (3p3d) D term of Mg I, observed by Paschen, 

the 3s € 4 ’  ionization limit. 

continuum of odd parity with which the (3p3d) ‘Do can mix. 

Consequently, the (3p3d) bo has only a slight autoionizing 
probability, and the widths of spectral lines originating in 

this term are comparable to widths of other non-autoionizing 

lines. Other examples have been given in refs. 127. 

l o  

However, there is no (3s € 4 )  ho 

The form of the matrix elements required for the calcu- 

lation of autoionizing widths is identical with that of the 

matrix elements required for calculating the energy of an ordi- 

nary excited state, apart from the occurrence of a continuous 

index E in place of a discrete quantum-number n. Thus the 

(4.55) 
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widths can be expressed as the sum of squares of various 

Slater-type integralsy including both "exchange" and "direct II 

type integrals. The coefficients of these integrals, giving 

the angular dependence of the matrix element, can be obtained 

by use of standard procedures. 115 
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E. Resonance Parameters 

Equation (2.91) gave the resonant part of the diagonal 

elements of 3: 

where the resonance parameters are 

(4.56) 

(4 57a) 

(4 57b) 

With incident El radiation, the first approximation to t(i) (w) is Ka 

This quantity vanishes unless the resonance state mixes, through 

the matrix element (Klwlc >, with a continuum atomic state of 
energy E = E + w. Near the resonance frequency w = w this 

condition means E = 5. That is, 
(‘1 can autoionize. Crete state cp 

C I KI 
(i) vanishes unless the dis- 

K 
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The first approximation to t(r) (cD), for el radiation, is 
aK 

This quantity expresses the amplitude for a radiative tran- 

sition between the ground state 'p;') and the discrete excited- 

state 'p (0) K g  
From these expressions, it folluws that the resonance para- 

meters are: 

(elec) 
K I the For autoionizing transitions, in which r, 

parameters of Fano and Cooper,45 discussed in Appendix A, are 

(4.59) 

.60a) 

I 

I 

(4.60b), 

, 

I 
I 
I 

(4.61a)i 
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I 
I 

(4.61b) 

The parameters q and p2 depend on frequency only through the 

variation of the continuum waveunctions with energy. This 

dependence should be slight over the resonance. 

For most purposes, one deals with target atoms whose 

magnetic sublevels are degenerate and equally populated. One 

then wishes a cross-section or refractivity that is summed over 

magnetic quantum-numbers %of the resonance states (gK = 2JK + 1 
sublevels) and averaqed over both the photon polarization p 

(3 values) and the magnetic quantum-number &$ of the initial 

atom (gI = 2JI + 1 possible values). This average yields the 

resonant term 

(4.62) 

where 
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F. Background 

The resonance profiles are superposed on a continuum 

background which is the conibined effect of distant resonances 

and direct-scattering processes (Eqs. (2 -88) - (2 -89) or (3 . 35) - 
(3.36)) . 

Autoionizing l ines  overlie a 

described by 

Averaged over p, this y i e l d s  the continuum-background cross- 

section, 

n 

The background for ordinary absorption l ines  comes from the 

second t e r m  of Eq.  (3.35), which contributes 

(4.65) 

(4.66) 

(4.67) 
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The background refractivity is given by the second and 

third terms of Eq. (3.36). The summation over continuum states 

comprises states with no photons (these must therefore be con- 

tinuum atomic-states) and states with Wo identical photons 

(which may have either discrete or continuum atomic-states). 

129 
The result is 

The single termwith N = R in the third summation contributes 

only a negligible portion of D K' 
background then becomes the well-knawn Sellmeier formula, 6 

so it may be dropped. The average 

(4.69) 
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G. Special Cases 

a. ordinary lines 

It is instructive to apply these results to the prediction 

or ordinary (non-autoionizing) line-profiles. In the absence 

of autoionization, the resonance parameters of Eq. (4.57) become 

- 
B,b> = 

These expressions 

59-60 refractivity, 

then yield the familiar results for 

and for the attenuation cross-section 

Equations (4.72) and (4.73) describe only the portion of 

;(a) or ;(a) that comes from a particular resonance. Additional 

(4.70) 

(4.71) 

(4.72) 

(4.73) 
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contributions come from all other resonances, as well as from 

a background of direct reactions, 

state the cross section may also be written 

For the lowest-lying resonant 

Thus, the attenuation cross-section for the so-called "resonance- 

line" of an atom, at the resonant frequency, takes the remarkably 

simple value 130 

while the integral over the absorption profile is approximately 

For wavelengths much longer than the "resonance-line," w <( wKI 

and rK(cD) % 2aw 

familiar Ray leigh-scatter ing' 

the cross section takes the 3 fId %K << wKI' 
f requency-dependence 

(4.74) 

(4.75) 

(4.76) 

(4.77) 



. 

b . Double excitations 

Since autoionizing l e v e l s  l i e  above an imiza t ion  l i m i t ,  

(O) is doubly excited: it K the zero-order resonance s t a t e  cp 

d i f f e r s  from the zero-order ground s t a t e  i n  two orb i t a l s .  

Photon t rans i t ions  from the ground s t a t e  t o  an autoionizing 

state involve a two-electron jump. I f  the basis  o rb i t a l s  are 

orthogonal, the matrix element < I I D  IK > vanishes, and Eq. (4.59) 

m u s t  be replaced by the more accurate equation 
c1 

1- 
n 

e,- e, 

(r) is negligibly s m a l l ,  taK When configuration mixing is s l igh t ,  

and the prof i le  parameters become 

A, 2 0 )  

(4.78) 

(4 -79) 

(4.80) 



Such resonances appear as symmetrical transmission windows. 

C. Zero-order mixing 

The preceding formulas were given i n  terms of the zero- 

order s t a t e s  qK ( 0 )  Since these s t a t e s  may be mixtures of con- 

figurations,  it is useful to rewrite the formulas i n  terms of 

bas i s  s t a t e s  rather than zero-order s t a t e s .  The resonance 

quant i t ies  then become, t o  luwest order: 

(4.81) 

(4.82) 

(4.83) 
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t .  

.6 

(4 . 8 5 )  

The zero-order mixing-coefficients (Kfk) may s igni f icant ly  

a f f e c t  predictions . For example, the 2-expansion theory 89 

regards the 2snp and the 2pns configurations of helium as 

degenerate t o  zero-order. 

states of the form 

The theory prescribes zero-order 

(4.86) 

where a and f3 are the zero-order mixing-coefficients. 

autoionizing widths t o  the l sep  continuum are 

The 

This predicts a broad and a narrow series of autoionizing l i nes  

converging to the degenerate 2s and 2p configuration of H e  . In  
+ 

(4.87al 

(4.87b) 

the same way, three d i s t inc t  series of l i n e s  should converge to 
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the 3s, 3p, 3d configuration of He+; each series should main- 

t a in  a character is t ic  width. 

Such series have been seen i n  helium, where the discrete- 

45 state miXing has been discussed by Fano and Cooper. 

d. Static fields 

If the atom is influenced by s t a t i c  electric f ie lds ,  the 

Hamiltonian H acquires additional terms. These w i l l  be included 

i n  the operator W .  For example, a uniform e lec t r ic  f ie ld  e 
ur 

requires 

while a point charge e '  located a t  R requires 
n.4 

The presence of a strong external f ie ld  can significantly 

affect the widths of an excited state which, though above the 

ionization l i m i t ,  is prevented from autoionizing by the preceding 

selection rules.  For example, a uniform e lec t r ic  f ie ld  e i n  the 

z-direction, 

-J 

(4.88) 

(4.89) 
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can produce autoionizing t rans i t ions  described by the  matrix 

element 

One then obtains a width having a quadratic dependence on 

f i e l d  strength,  

w i t h  the sums again running over barred quantum-numbers a t  

fixed energy E. 

It is in t e re s t ing  t o  note that, although a per turbat ionw'  

may s ign i f i can t ly  influence the  width of an autoionizing l i n e ,  

N' may have l i t t l e  e f f e c t  on parameters pk and BK. 

suppose the i n i t i a l  s t a t e  11 > has even par i ty  and the state 

1K > has odd parity,  so that  dipole t rans i t ions  < I I D  IK > are 

alluwed. I f  v '  = eD 8, then the autoionizing width receives 

contributions I < K k '  I C  > I 
But the quantity 

For example, 

CL 

. % -  

2 to  even states of the continuum. 

(4.90) 

(4.91 I I 

(4.92) 



(4 93) 

is zero, since (Rfrv’ I C  > # 0 requires an even continuum and 

< c l D  11 > # 0 requires an odd continuum. 
c1 
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APPENDIX A: PROFILE PARAMETERIZATION 

Other equivalent parameterizations of the function Q(E) 

of ~ q .  (1.1) have also been used. Nuclear physicists often 

use the f o r m  11 

44 while Fano has suggested 

E = (E-€. ) /  (fb). 

In addition, Fano and in-roduced a parameter 

Another comon practice is to parameterize the scattering matrix 

in the form 



e .  .. 
-95- 

with a phase shift 

This leads to an attenuation cross-section with the energy 

dependence 

Since all these formulas give identical profiles, a comment 

on the significance of parameterization (1.1) may be in order. 

When parameter A is zero, the profile Q ( E )  is symmetrical 

about Eo, Eq. (1.2). 

energy dependence of the photon absorption-coefficients near an 

ordinary absorption line (in the absence of significant external 

perturbations to the atoms). 

With B positive, this profile describes the 

When parameter A is not zero, the profile Q ( E )  displays 

a dip on one side of E 

this aspetry arises from coherent interference between direct 

and a peak on the other side. Physically, 
0 
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processes such as potential scattering, which provides a 

background varying slawly with E, and the formation and decay 

of a compound state, which varies sharply with E. This inter- 

ference is sometimes seen in attenuation cross-sections, where 

the dip in Q(E) appears as a "transmission window" near Eo. 

Such windows have been noted in the attenuation spectra of 

s-wave neutrons, shown in Figure 2, and in photon transitions 

to autoionizing states, shown in Figure 3 ,  Symmetrical windows 

occur if A = 0 and B is negative. 

Empirically, the parameters of Eq. (1.2) have the follawing 

significance. The area under the profile is 

If we define a peak height H and a dip depth D (for a Lorentz 

profile, D = 0) by the relationship 

(A. 9) 

(A.lO) 
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w h e r e  Emax and Emin are the energies of maximum and minimuxu 

Q(E), then 

?L!! = H - 0 ,  
r 

Equations (A.11) p e r m i t  estimation of profile parameters A and B 

directly from plots of the profile. In  the limiting case A = 0, 

- the w i d t h  r is Emax 

r is the f u l l  w i d t h  a t  the half-maximuxn of Q(E) . 
, w h i l e  i n  the l imi t ing  case B = 0, E m i n  

The parameterization of Eq. (1.1) is readily compared w i t h  

that used by Fano: 

(A.12) 

(A.12)  

(A.13a)  

(A .13b)  
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t 

* Phese relations hold quite generally for the attenuation pro- 

file near an isolated resonance: they include the effects of a 

multichannel continuum and configuration mixing. 

It should be noted that each of the formulas for Q ( E )  

involve four parameters, in addition to a background. The 

present paper uses the real numbers A, By Eo, r, but clearly 

the parameters q, p, Eo, r serve as well. 

transitions A vanishes and B and r are tied together. (B is 

essentially the oscillator strength.) Thus, two parameters, 

E and r, suffice to fit ordinary absorption lines. 

For non-autoionizhg 

0 

(A.13~) 

(A.13d) 

(A.13e) 
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Caption 

FIG, 1, Relative cross-sections for reactions leading to 

compound states of Si . Projectile energy in center-of-mass 
system, cross-sections in arbitrary units. (Data of S. G. Kaufman, 

E. Goldberg, L. J. Koester, and F. P. Mooring, Phys. Rev. 88, 

673, 1952). 
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8 Caption 

FIG. 2. T o t a l  neutron attenuation cross-section for sulfur. 

(From R. E.  Peterson, H.  H. Barschall, and C. H. Bockelman, 

Phys. R e v .  79, 593, 1950). 
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Caption 

F I G .  3.  Photon attenuation cross-section for neutral barium. 

Cross-section in arbitrary units. ( D a t a  froan W .  R.  S .  Garton, 

Harvard C ollege Observatory Shock-Tube Spectroscopy Laboratory 

Scientific Report No. 6, November, 1965).  
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